Počet záznamů: 1  

Thermomechanical fatigue of additively manufactured 316L stainless steel

  1. 1.
    0571964 - ÚFM 2024 RIV CH eng J - Článek v odborném periodiku
    Babinský, Tomáš - Šulák, Ivo - Kuběna, Ivo - Man, Jiří - Weiser, Adam - Švábenská, Eva - Englert, L. - Guth, S.
    Thermomechanical fatigue of additively manufactured 316L stainless steel.
    Materials Science and Engineering A Structural Materials Properties Microstructure and Processing. Roč. 869, MARCH (2023), č. článku 144831. ISSN 0921-5093. E-ISSN 1873-4936
    Grant CEP: GA MŠMT(CZ) EF18_053/0016933
    GRANT EU: European Commission(XE) 857124 - Horizont 2020
    Institucionální podpora: RVO:68081723
    Klíčová slova: 316l * Additive manufacturing * Laser powder bed fusion * Stainless steel * Thermomechanical fatigue
    Obor OECD: Materials engineering
    Impakt faktor: 6.4, rok: 2022
    Způsob publikování: Open access
    https://www.sciencedirect.com/science/article/pii/S0921509323002551?via%3Dihub

    An important issue in energy conversion is the performance of materials under complex cyclic loading in a variable temperature field. The present study addresses a new field of research – thermomechanical fatigue of additively manufactured metallic materials, which is crucial for understanding the behaviour of this promising material class under real operating conditions. The material of interest – 316L austenitic stainless steel, commonly used for heat exchangers – was manufactured to bars using laser powder bed fusion. Cylindrical specimens with characteristic hierarchical, non-equilibrium cellular microstructure were machined out of the bars. Two orientations corresponding to the inclination of the building direction to the specimen axis were considered: 0° and 90°. The specimens were subjected to thermomechanical fatigue loading under in-phase (maximum tension coincides with maximum temperature) and out-of-phase (maximum compression coincides with maximum temperature) conditions. The cellular dislocation microstructure showed good stability despite gradual coarsening under the combined effect of thermal loading up to 750 °C and severe plastic deformation. Systematic electron microscopy observations further revealed that basic damage mechanisms – either creep or stress-assisted oxide cracking, the prevalence of which depends on thermomechanical loading conditions – correspond to the behaviour of conventional metallic materials. Under in-phase loading, intergranular creep damage is dominant, hence a key factor affecting the lifetime is the number of grain boundaries in the loading direction. Under out-of-phase loading, fatigue damage is dominant, and the lifetime is determined by transgranular propagation of a principal crack. Comparing the two orientations, the inherent microstructural texture was found to be a crucial factor, also determining the number of grain boundaries and cell walls in the loading direction. Hence, tailoring the microstructure for the service relevant loading conditions via additive manufacturing techniques enables to enhance the component performance in the important field of energy conversion.
    Trvalý link: https://hdl.handle.net/11104/0342822

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.