Počet záznamů: 1  

PPP-completeness and extremal combinatorics

  1. 1.
    0569857 - MÚ 2024 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Bourneuf, R. - Folwarczný, Lukáš - Hubáček, P. - Rosen, A. - Schwartzbach, N. I.
    PPP-completeness and extremal combinatorics.
    14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Dagstuhl: Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2023 - (Kalai, Y.), č. článku 22. Leibniz International Proceedings in Informatics, 251. ISBN 978-3-95977-263-1. ISSN 1868-8969.
    [14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Cambridge, Massachusetts (US), 10.01.2023-13.01.2023]
    Grant CEP: GA ČR(CZ) GX19-27871X
    Institucionální podpora: RVO:67985840
    Klíčová slova: total search problems * extremal combinatorics * PPP-completeness
    Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    https://doi.org/10.4230/LIPIcs.ITCS.2023.22

    Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma, here 'implicit' means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects.
    We show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes.
    Our completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs 'from the book' are non-constructive.
    Trvalý link: https://hdl.handle.net/11104/0341197

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Folwarczny.pdf0778.8 KBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.