Počet záznamů: 1  

Optical force aggregation of gold nanoparticles as a tool to fabrication a multifunctional sensor

  1. 1.
    0568181 - ÚPT 2023 PL eng A - Abstrakt
    Bernatová, Silvie - Kizovský, Martin - Donato, M. G. - Foti, A. - Zemánek, Pavel - Samek, Ota - Maragò, O. M. - Gucciardi, P. G.
    Optical force aggregation of gold nanoparticles as a tool to fabrication a multifunctional sensor.
    Book of Abstracts. 22nd Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, September 5-9, 2022, Wojanów, Poland. Wrocław: Wroclaw University of Science and Technology, 2022 - (Sztylińska, K.). s. 57
    [Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics /22./. 05.09.2022-09.09.2022, Wojanow]
    Grant ostatní: AV ČR(CZ) MSM100652101
    Program: Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků
    Institucionální podpora: RVO:68081731
    Klíčová slova: optical printing * optical pushing * surface enhanced Raman spectroscopy * nanoplastics * sensor * biomolecule
    Obor OECD: Optics (including laser optics and quantum optics)
    https://psc2022.pwr.edu.pl/docs/pscoc2022_book_of_abstracts.pdf

    Optical nano-printing provides a versatile platform to print various nanometer size particles into arbitrary configurations. Optical printing, the use of light to direct the formation of a desired structure, has been of significant interest in the last two decades. For particles much smaller than the laser wavelength, optical forces can be well described in the dipole approximation. For a focused laser beam, two main optical force components are identified: the gradient force, which attracts particles toward the high-intensity focal spot, and the scattering force, which tends to push particles along the beam propagation direction. When the light is nearly resonant with the particle localized surface plasmons resonance, optical forces are dominated by radiation
    pressure and can be used to efficiently push nanoparticles along the beam optical axis onto a substrate. In this context, optical forces can be applied to optically print nanoparticles
    into patterns aggregated elements on surfaces such as glass. Here, we summarize a recent progress in our experiments that use optical nanoprinting of plasmonic nanoparticles to create an active aggregate in a solution containing biomolecules or nanoplastics. The active aggregate, produced on the base of optical forces, serves as a sensitive sensor which is used to detect biomolecules in concentration below the limit of detection for Raman spectroscopy and/or to detection of nanometer size plastic particles.
    Trvalý link: https://hdl.handle.net/11104/0339516

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.