Počet záznamů: 1  

The DNA Radical Code. Resolution of Identity in Dissociations of Trinucleotide Codon Cation Radicals in the Gas Phase

  1. 1.
    0567582 - ÚOCHB 2024 RIV US eng J - Článek v odborném periodiku
    Wan, J. - Brož, Břetislav - Liu, Y. - Huang, S. R. - Marek, Aleš - Tureček, F.
    The DNA Radical Code. Resolution of Identity in Dissociations of Trinucleotide Codon Cation Radicals in the Gas Phase.
    Journal of the American Society for Mass Spectrometry. Roč. 34, č. 2 (2023), s. 304-319. ISSN 1044-0305. E-ISSN 1879-1123
    Grant CEP: GA MŠMT(CZ) LTAUSA19094
    Institucionální podpora: RVO:61388963
    Klíčová slova: electron transfer dissociation * tandem mass spectrometry * photodissociation action spectroscopy
    Obor OECD: Analytical chemistry
    Impakt faktor: 3.2, rok: 2022
    Způsob publikování: Omezený přístup
    https://doi.org/10.1021/jasms.2c00322

    Sixty DNA trinucleotide cation radicals covering a large part of the genetic code alphabet were generated by electron transfer in the gas phase, and their chemistry was studied by collision-induced dissociation tandem mass spectrometry and theoretical calculations. The major dissociations involved loss of nucleobase molecules and radicals, backbone cleavage, and cross-ring fragmentations that depended on the nature and position of the nucleobases. Mass identity in dissociations of symmetrical trinucleotide cation radicals of the (XXX+2H)+• and (XYX+2H)+• type was resolved by specific 15N labeling. The specific features of trinucleotide cation radical dissociations involved the dominant formation of d2+ ions, hydrogen atom migrations accompanying the formation of (w2+H)+•, (w2+2H)+, and (d2+2H)+ sequence ions, and cross-ring cleavages in the 3′- and 5′-deoxyribose moieties that depended on the nucleobase type and its position in the ion. Born-Oppenheimer molecular dynamics (BOMD) and density functional theory calculations were used to obtain structures and energies of several cation-radical protomers and conformers for (AAA+2H)+•, (CCC+2H)+•, (GGG+2H)+•, (ACA+2H)+•, and (CAA+2H)+• that were representative of the different types of backbone dissociations. The ion electronic structure, protonation and radical sites, and hydrogen bonding were used to propose reaction mechanisms for the dissociations.
    Trvalý link: https://hdl.handle.net/11104/0338826

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.