Počet záznamů: 1  

Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations

  1. 1.
    0565270 - ÚCHP 2024 RIV US eng J - Článek v odborném periodiku
    Rezlerová, E. - Jain, S.K. - Lísal, Martin
    Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations.
    Energy and Fuels. Roč. 37, č. 1 (2023), s. 492-508. ISSN 0887-0624. E-ISSN 1520-5029
    Grant CEP: GA ČR(CZ) GA21-27338S
    Institucionální podpora: RVO:67985858
    Klíčová slova: electric double-layer * rutile 110 surface * shale gas
    Obor OECD: Physical chemistry
    Impakt faktor: 5.3, rok: 2022
    Způsob publikování: Open access s časovým embargem

    Organic-shale formations are unconventional gas reservoirs with broad pore size distributions. Shale consists of two distinct components: organic matter and clay minerals. The size of pores in the organic matter is mostly concentrated at less than six nanometers, and these micropores and small mesopores provide the majority of adsorption surface area and gas storage volume. In these nanometer-sized pores, the geofluid behavior becomes significantly different from the bulk behavior due to the strong solid−fluid interactions and other confinement effects. Understanding the properties of fluids such as methane, ethane, propane, and carbon dioxide in narrow shale pores is critical for identifying ways to deploy shale gas technology with reduced environmental impact. Specifically, methane is a proxy of the shale gas, and ethane and propane are minor shale-gas components. Further, carbon
    dioxide is used for enhanced shale-gas recovery. We employ molecular-level simulations to explore adsorption, diffusion, and transport of methane, ethane, propane, and carbon dioxide in realistic models of organic-shale materials at a representative shale reservoir temperature and pressures. We first use Hybrid Reverse Monte Carlo with experimental pair distribution functions to build dual-porosity kerogen models corresponding to an immature marine kerogen from the Eagle Ford Play and a mature marine kerogen from the clay-rich Marcellus Play. We then employ Grand Canonical Monte Carlo simulations to study the fluid adsorption in the porous kerogen structures. We complete the adsorption studies by simulating the self-diffusivity, collective diffusivity, and transport diffusivity of the adsorbed fluid molecules in the shale kerogens using equilibrium and nonequilibrium molecular dynamics.
    Trvalý link: https://hdl.handle.net/11104/0336840

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0565270.pdf04.9 MBAutorský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.