Počet záznamů: 1  

Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations

  1. 1.
    0564242 - MBÚ 2023 RIV US eng J - Článek v odborném periodiku
    Pacheco-Garcia, J. L. - Anoz-Carbonell, E. - Loginov, Dmitry Sergej - Vaňková, Pavla - Salido, E. - Man, Petr - Medina, M. - Palomino-Morales, R. - Pey, A. L.
    Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations.
    Archives of Biochemistry and Biophysics. Roč. 729, OCT 30 2022 (2022), č. článku 109392. ISSN 0003-9861. E-ISSN 1096-0384
    Grant CEP: GA MŠMT(CZ) ED1.1.00/02.0109
    GRANT EU: European Commission(XE) 731077 - EU_FT-ICR_MS
    Výzkumná infrastruktura: CIISB II - 90127
    Institucionální podpora: RVO:61388971 ; RVO:86652036
    Klíčová slova: Flavoprotein * Phosphorylation * Structure-function relationships
    Obor OECD: Biochemistry and molecular biology
    Impakt faktor: 3.9, rok: 2022
    Způsob publikování: Open access
    https://www.sciencedirect.com/science/article/pii/S0003986122002764?via%3Dihub

    Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
    Trvalý link: https://hdl.handle.net/11104/0335948

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.