Počet záznamů: 1  

Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments

  1. 1.
    0560777 - ÚFM 2023 RIV GB eng J - Článek v odborném periodiku
    Moravčík, I. - Zelený, M. - Dlouhý, Antonín - Hadraba, Hynek - Moravcikova-Gouvea, L. - Papež, P. - Fikar, Ondřej - Dlouhý, Ivo - Raabe, D. - Li, Z.
    Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments.
    Science and Technology of Advanced Materials. Roč. 23, č. 1 (2022), s. 376-392. ISSN 1468-6996. E-ISSN 1878-5514
    Grant CEP: GA MŠMT(CZ) EF16_025/0007304; GA ČR(CZ) GA14-22834S
    Institucionální podpora: RVO:68081723
    Klíčová slova: ab initio calculations * interstitials * medium entropy alloy * scanning transmission electron microscopy * stacking fault energy * strengthening
    Obor OECD: Materials engineering
    Impakt faktor: 5.5, rok: 2022
    Způsob publikování: Open access
    https://www.tandfonline.com/doi/full/10.1080/14686996.2022.2080512

    We investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.5 at % N. Total energy calculations based on density functional theory (DFT) as well as thermodynamic modeling of the Gibbs free energy with the CALPHAD (CALculation of PHAse Diagrams) method reveal a stabilizing effect of N and C interstitials on the FCC lattice with respect to the hexagonal close-packed (HCP) CoCrNi-X (X: N, C) lattice. Scanning transmission electron microscopy (STEM) measurements of the width of dissociated 1/2 dislocations suggest that the SFE of CoCrNi increases from 22 to 42-44 mJ center dot m(-2) after doping the alloy with 0.5 at. % interstitial N. The higher SFE reduces the nucleation rates of twins, leading to an increase in the critical stress required to trigger deformation twinning, an effect which can be used to design load-dependent strain hardening response.
    Trvalý link: https://hdl.handle.net/11104/0333744

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.