Počet záznamů: 1  

What goes in must come out? The metabolic profile of plants and caterpillars, frass, and adults of Asota (Erebidae: Aganainae) feeding on Ficus (Moraceae) in New Guinea

  1. 1.
    0560353 - BC 2023 RIV NL eng J - Článek v odborném periodiku
    Fontanilla, Alyssa Malapit - Aubona, G. - Sisol, M. - Kuukkanen, I. - Salminen, J.-P. - Miller, S. E. - Holloway, J. D. - Novotný, Vojtěch - Volf, Martin - Segar, S. T.
    What goes in must come out? The metabolic profile of plants and caterpillars, frass, and adults of Asota (Erebidae: Aganainae) feeding on Ficus (Moraceae) in New Guinea.
    Journal of Chemical Ecology. Roč. 48, 9-10 (2022), s. 718-729. ISSN 0098-0331. E-ISSN 1573-1561
    Grant CEP: GA ČR(CZ) GX19-28126X
    GRANT EU: European Commission(XE) 669609 - Diversity6continents
    Institucionální podpora: RVO:60077344
    Klíčová slova: alkaloids * plant-insect interactions * food-webs
    Obor OECD: Ecology
    Impakt faktor: 2.3, rok: 2022
    Způsob publikování: Omezený přístup
    https://link.springer.com/article/10.1007/s10886-022-01379-x

    Insect herbivores have evolved a broad spectrum of adaptations in response to the diversity of chemical defences employed by plants. Here we focus on two species of New Guinean Asota and determine how these specialist moths deal with the leaf alkaloids of their fig (Ficus) hosts. As each focal Asota species is restricted to one of three chemically distinct species of Ficus, we also test whether these specialized interactions lead to similar alkaloid profiles in both Asota species. We reared Asota caterpillars on their respective Ficus hosts in natural conditions and analyzed the alkaloid profiles of leaf, frass, caterpillar, and adult moth samples using UHPLC-MS/MS analyses. We identified 43 alkaloids in our samples. Leaf alkaloids showed various fates. Some were excreted in frass or found in caterpillars and adult moths. We also found two apparently novel indole alkaloids-likely synthesized de novo by the moths or their microbiota-in both caterpillar and adult tissue but not in leaves or frass. Overall, alkaloids unique or largely restricted to insect tissue were shared across moth species despite feeding on different hosts. This indicates that a limited number of plant compounds have a direct ecological function that is conserved among the studied species. Our results provide evidence for the importance of phytochemistry and metabolic strategies in the formation of plant-insect interactions and food webs in general. Furthermore, we provide a new potential example of insects acquiring chemicals for their benefit in an ecologically relevant insect genus.
    Trvalý link: https://hdl.handle.net/11104/0339223

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.