Počet záznamů: 1  

Erbium ion implantation into LiNbO.sub.3./sub., Al.sub.2./sub.O.sub.3./sub., ZnO and diamond - measurement and modelling - an overview

  1. 1.
    0560216 - ÚJF 2023 RIV GB eng J - Článek v odborném periodiku
    Cajzl, J. - Nekvindová, P. - Macková, Anna - Varga, Marián - Kromka, Alexander
    Erbium ion implantation into LiNbO3, Al2O3, ZnO and diamond - measurement and modelling - an overview.
    Physical Chemistry Chemical Physics. Roč. 24, č. 32 (2022), s. 19052-19072. ISSN 1463-9076. E-ISSN 1463-9084
    Grant CEP: GA MŠMT EF16_013/0001812
    Výzkumná infrastruktura: CANAM II - 90056
    Institucionální podpora: RVO:68378271 ; RVO:61389005
    Klíčová slova: luminescence * crystalline materials * ZnO
    Obor OECD: Nuclear physics; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D)
    Impakt faktor: 3.3, rok: 2022
    Způsob publikování: Omezený přístup
    https://doi.org/10.1039/D2CP01803A

    The presented overview deals with the study of the luminescence properties of lanthanide ions incorporated into different dielectric crystalline materials for use in photonics and optoelectronics. From the crystalline materials, non-centrosymmetric hexagonal crystals of LiNbO3, Al2O3 and ZnO, together with the centrosymmetric cubic crystal of diamond, were chosen. The above-mentioned materials represent a certain cross-section through various crystal structure geometries with different internal bonding of atoms which represent different crystal vicinity for the incorporated Er ions. During more than ten years of our research, each of the crystals was doped with erbium ions and the resulting structural and luminescence properties were studied in detail and compared between the mentioned crystalline materials to find similar behaviour for erbium ions in the different crystalline materials. To better understand the incorporation of erbium in the studied crystalline materials, theoretical simulations of different erbium-doped crystal models were carried out. In the calculations, cohesive energies of the structures and erbium defect-formation energies were compared in order to find the most favourable erbium positions in the crystals. Also, from the geometry optimization calculations, the optimal geometry arrangements in the vicinity of erbium ions in different crystals were studied and visualized. The results of the theoretical simulations confirmed the experimental results - i.e., from all the theoretical erbium-doped crystal models, the most stable structures contained erbium in the substitutional positions with octahedral oxygen coordination.
    Trvalý link: https://hdl.handle.net/11104/0333225

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.