Počet záznamů: 1  

The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly

  1. 1.
    0558372 - BFÚ 2023 RIV GB eng J - Článek v odborném periodiku
    Simmons, C. - MacCulloch, T. - Krepl, Miroslav - Matthies, M. - Buchberger, A. - Crawford, I. - Šponer, Jiří - Sulc, P. - Stephanopoulos, N. - Yan, H.
    The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly.
    Nature Communications. Roč. 13, č. 1 (2022), č. článku 3112. E-ISSN 2041-1723
    Grant CEP: GA MŠMT EF15_003/0000477; GA ČR(CZ) GA21-23718S
    Institucionální podpora: RVO:68081707
    Klíčová slova: nucleic-acid junctions * force-field * immobile * model * crystallization * refinement * software
    Obor OECD: Inorganic and nuclear chemistry
    Impakt faktor: 16.6, rok: 2022
    Způsob publikování: Open access
    https://www.nature.com/articles/s41467-022-30779-6

    The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed fatal, and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context.
    Trvalý link: https://hdl.handle.net/11104/0339549

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.