Počet záznamů: 1  

Counting Extensions Revisited

  1. 1.
    0557945 - ÚI 2023 RIV US eng J - Journal Article
    Šileikis, Matas - Warnke, L.
    Counting Extensions Revisited.
    Random Structures and Algorithms. Roč. 61, č. 1 (2022), s. 3-30. ISSN 1042-9832. E-ISSN 1098-2418
    R&D Projects: GA ČR(CZ) GA19-08740S; GA ČR(CZ) GJ20-27757Y
    Institutional support: RVO:67985807
    Keywords : extreme values * random graph * rooted subgraphs * subgraphcounts
    OECD category: Pure mathematics
    Impact factor: 1, year: 2022 ; AIS: 1.149, rok: 2022
    Method of publishing: Limited access
    Result website:
    http://dx.doi.org/10.1002/rsa.21050DOI: https://doi.org/10.1002/rsa.21050

    We consider rooted subgraphs in random graphs, that is, extension counts such as (i) the number of triangles containing a given vertex or (ii) the number of paths of length three connecting two given vertices. In 1989, Spencer gave sufficient conditions for the event that, with high probability, these extension counts are asymptotically equal for all choices of the root vertices. For the important strictly balanced case, Spencer also raised the fundamental question as to whether these conditions are necessary. We answer this question by a careful second moment argument, and discuss some intriguing problems that remain open.
    Permanent Link: http://hdl.handle.net/11104/0331829
     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.