Počet záznamů: 1  

On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives

  1. 1.
    0557191 - ÚTIA 2023 RIV US eng J - Článek v odborném periodiku
    Gfrerer, H. - Outrata, Jiří
    On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives.
    Journal of Mathematical Analysis and Applications. Roč. 508, č. 2 (2022), č. článku 125895. ISSN 0022-247X. E-ISSN 1096-0813
    Grant CEP: GA ČR GF21-06569K
    Institucionální podpora: RVO:67985556
    Klíčová slova: Generalized derivatives * Second-order theory * Strong metric (sub)regularity * Semismoothness⁎
    Obor OECD: Pure mathematics
    Impakt faktor: 1.3, rok: 2022
    Způsob publikování: Open access
    Web výsledku:
    http://library.utia.cas.cz/separaty/2022/MTR/outrata-0557191.pdf https://www.sciencedirect.com/science/article/pii/S0022247X2100977X?via%3Dihub
    DOI: https://doi.org/10.1016/j.jmaa.2021.125895

    The paper deals with a comprehensive theory of mappings, whose local behavior can be described by means of linear subspaces, contained in the graphs of two (primal and dual) generalized derivatives. This class of mappings includes the graphically Lipschitzian mappings and thus a number of multifunctions, frequently arising in optimization and equilibrium problems. The developed theory makes use of new generalized derivatives, provides us with some calculus rules and reveals a number of interesting connections. In particular, it enables us to construct a modification of the semismooth* Newton method with improved convergence properties and to derive a generalization of Clarke's Inverse Function Theorem to multifunctions together with new efficient characterizations of strong metric (sub)regularity and tilt stability.
    Trvalý link: http://hdl.handle.net/11104/0331258

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.