Počet záznamů: 1
On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives
- 1.0557191 - ÚTIA 2023 RIV US eng J - Článek v odborném periodiku
Gfrerer, H. - Outrata, Jiří
On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives.
Journal of Mathematical Analysis and Applications. Roč. 508, č. 2 (2022), č. článku 125895. ISSN 0022-247X. E-ISSN 1096-0813
Grant CEP: GA ČR GF21-06569K
Institucionální podpora: RVO:67985556
Klíčová slova: Generalized derivatives * Second-order theory * Strong metric (sub)regularity * Semismoothness⁎
Obor OECD: Pure mathematics
Impakt faktor: 1.3, rok: 2022
Způsob publikování: Open access
Web výsledku:
http://library.utia.cas.cz/separaty/2022/MTR/outrata-0557191.pdf https://www.sciencedirect.com/science/article/pii/S0022247X2100977X?via%3Dihub
DOI: https://doi.org/10.1016/j.jmaa.2021.125895
The paper deals with a comprehensive theory of mappings, whose local behavior can be described by means of linear subspaces, contained in the graphs of two (primal and dual) generalized derivatives. This class of mappings includes the graphically Lipschitzian mappings and thus a number of multifunctions, frequently arising in optimization and equilibrium problems. The developed theory makes use of new generalized derivatives, provides us with some calculus rules and reveals a number of interesting connections. In particular, it enables us to construct a modification of the semismooth* Newton method with improved convergence properties and to derive a generalization of Clarke's Inverse Function Theorem to multifunctions together with new efficient characterizations of strong metric (sub)regularity and tilt stability.
Trvalý link: http://hdl.handle.net/11104/0331258
Počet záznamů: 1