Počet záznamů: 1  

Bimolecular reactions on sticky and slippery clusters: Electron-induced reactions of hydrogen peroxide

  1. 1.
    0556900 - ÚFCH JH 2023 RIV US eng J - Článek v odborném periodiku
    Poštulka, J. - Slavíček, P. - Pysanenko, Andriy - Poterya, Viktoriya - Fárník, Michal
    Bimolecular reactions on sticky and slippery clusters: Electron-induced reactions of hydrogen peroxide.
    Journal of Chemical Physics. Roč. 156, č. 5 (2022), č. článku 054306. ISSN 0021-9606. E-ISSN 1089-7690
    Grant CEP: GA ČR(CZ) GX21-26601X; GA ČR(CZ) GA21-07062S
    Výzkumná infrastruktura: e-INFRA CZ - 90140
    Institucionální podpora: RVO:61388955
    Klíčová slova: water clusters * nonadiabatic dynamics * molecular-dynamics * argon * ionization * chemistry * attachment * generation * dimer
    Obor OECD: Physical chemistry
    Impakt faktor: 4.4, rok: 2022
    Způsob publikování: Open access

    Nanoparticles can serve as an efficient reaction environment for bimolecular reactions as the reactants concentrate either inside the nanoparticle or on the surface of the nanoparticle. The reaction rate is then controlled by the rate of formation of the reaction pairs. We demonstrate this concept on the example of electron-induced reactions in hydrogen peroxide. We consider two types of nanoparticle environments: solid argon particles, only weakly interacting with the hydrogen peroxide reactant, and ice particles with a much stronger interaction. The formation of hydrogen peroxide dimers is investigated via classical molecular dynamics (MD) simulations on a microsecond timescale. With a modified force field for hydrogen peroxide, we found out a fast formation and stabilization of the hydrogen peroxide dimer for argon nanoparticles, while the reaction pair was formed reversibly at a much slower rate on the water nanoparticles. We have further investigated the electron-induced reactions using non-adiabatic ab initio MD simulations, identifying the possible reaction products upon the ionization or electron attachment. The major reaction path in all cases corresponded to a proton transfer. The computational findings are supported by mass spectrometry experiments, where large Ar-M and (H2O)(M) nanoparticles are generated, and several hydrogen peroxide molecules are embedded on these nanoparticles in a pickup process. Subsequently, the nanoparticles are ionized either positively by 70 eV electrons or negatively by electron attachment at electron energies below 5 eV. The recorded mass spectra demonstrate the efficient coagulation of H2O2 on Ar-M, while it is quite limited on (H2O)(M).
    Trvalý link: http://hdl.handle.net/11104/0331017

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0556900.pdf16.5 MBopen accessVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.