Počet záznamů: 1  

Metallic Effects on p-Hydroxyphenyl Porphyrin Thin-Film-Based Planar Optical Waveguide Gas Sensor: Experimental and Computational Studies

  1. 1.
    0556631 - MBÚ 2023 RIV CH eng J - Článek v odborném periodiku
    Kari, N. - Zannotti, M. - Giovannetti, R. - Řeha, David - Minofar, Babak - Abliz, S. - Yimit, A.
    Metallic Effects on p-Hydroxyphenyl Porphyrin Thin-Film-Based Planar Optical Waveguide Gas Sensor: Experimental and Computational Studies.
    Nanomaterials. Roč. 12, č. 6 (2022), č. článku 944. E-ISSN 2079-4991
    Výzkumná infrastruktura: e-INFRA CZ - 90140
    Institucionální podpora: RVO:61388971
    Klíčová slova: molecular-dynamics * initial configurations * optoelectronic nose * identification * transition * package * gromacs * arrays * planar optical waveguide * nitrogen dioxide gas sensor * porphyrin complex * molecular dynamic simulations * quantum mechanical calculation
    Obor OECD: Biophysics
    Impakt faktor: 5.3, rok: 2022
    Způsob publikování: Open access
    https://www.mdpi.com/2079-4991/12/6/944

    Metal effects on the gas sensing behavior of metal complexes of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) thin film was investigated in terms of detecting NO2 gas by the planar optical waveguide. For this purpose, several THPP and metal complexes were synthesized with different central metal ions: Co(II), Ni(II), Cu(II), and Zn(II). Planar optical gas sensors were fabricated with the metalloporphyrins deposited on K+ ion-exchanged soda-lime glass substrate with the spin coating method serving as host matrices for gas interaction. All of the THPP complex's films were fully characterized by UV-Vis, IR and XPS spectroscopy, and the laser light source wavelength was selected at 520 and 670 nm. The results of the planar optical waveguide sensor show that the Zn-THPP complex exhibits the strongest response with the lowest detectable gas concentration of NO2 gas for both 520 nm and 670 nm. The Ni-THPP and Co-THPP complexes display good efficiency in the detection of NO2, while, on the other hand, Cu-THPP shows a very low interaction with NO2 gas, with only 50 ppm and 200 ppm detectable gas concentration for 520 nm and 670 nm, respectively. In addition, molecular dynamic simulations and quantum mechanical calculations were performed, proving to be coherent with the experimental results.
    Trvalý link: http://hdl.handle.net/11104/0331294

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.