Počet záznamů: 1  

Microstructure and Mechanical Properties of Laser Additive Manufactured H13 Tool Steel

  1. 1.
    0556593 - ÚJF 2023 RIV CH eng J - Článek v odborném periodiku
    Trojan, K. - Ocelik, V. - Čapek, J. - Čech, J. - Canelo-Yubero, David - Ganev, N. - Kolařík, K. - de Hosson, J. T. M.
    Microstructure and Mechanical Properties of Laser Additive Manufactured H13 Tool Steel.
    Metals. Roč. 12, č. 2 (2022), č. článku 243. ISSN 2075-4701. E-ISSN 2075-4701
    Výzkumná infrastruktura: CANAM II - 90056; Reactors LVR-15 and LR-0 II - 90120
    Institucionální podpora: RVO:61389005
    Klíčová slova: laser additive manufacturing * laser cladding * AISI H13 tool steel * microstructure * residual stresses * electron diffraction * X-ray diffraction * neutron diffraction * in-situ tensile testing
    Obor OECD: Materials engineering
    Impakt faktor: 2.9, rok: 2022 ; AIS: 0.411, rok: 2022
    Způsob publikování: Open access
    Web výsledku:
    https://doi.org/10.3390/met12020243DOI: https://doi.org/10.3390/met12020243

    Hot working tool steel (AISI H13) is one of the most common die materials used in casting industries. A die suffers from damage due to friction and wear during its lifetime. Therefore, various methods have been developed for its repair to save costs to manufacture a new one. A great benefit of laser additive manufacturing (cladding) is the 3D high production rate with minimal influence of thermal stresses in comparison with conventional arc methods. Residual stresses are important factors that influence the performance of the product, especially fatigue life. Therefore, the aim of this contribution is to correlate the wide range of results for multilayer cladding of H13 tool steel. X-ray and neutron diffraction experiments were performed to fully describe the residual stresses generated during cladding. Additionally, in-situ tensile testing experiments inside a scanning electron microscope were performed to observe microstructural changes during deformation. The results were compared with local hardness and wear measurements. Because laser cladding does not achieve adequate accuracy, the effect of necessary post-grinding was investigated. According to the findings, the overlapping of beads and their mutual tempering significantly affect the mechanical properties. Further, the outer surface layer, which showed tensile surface residual stresses and cracks, was removed by grinding and surface compressive residual stresses were described on the ground surface.
    Trvalý link: http://hdl.handle.net/11104/0330765
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0556593 .pdf24.3 MBOpen Access - CC licenceVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.