Počet záznamů: 1  

Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress

  1. 1.
    0553583 - ÚEB 2022 RIV GB eng J - Článek v odborném periodiku
    Dziewit, K. - Pěnčík, Aleš - Dobrzyńska, K. - Novák, Ondřej - Szal, B. - Podgórska, A.
    Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress.
    BMC Plant Biology. Roč. 21, č. 1 (2021), č. článku 602. ISSN 1471-2229. E-ISSN 1471-2229
    Grant CEP: GA MŠMT(CZ) EF16_019/0000827
    Institucionální podpora: RVO:61389030
    Klíčová slova: Ammonium nutrition * Arabidopsis thaliana * Auxin conjugation * Auxin degradation * Auxin synthesis * Root development
    Obor OECD: Biochemistry and molecular biology
    Impakt faktor: 5.260, rok: 2021
    Způsob publikování: Open access
    http://doi.org/10.1186/s12870-021-03385-9

    Background: The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. Results: Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. Conclusions: NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.
    Trvalý link: http://hdl.handle.net/11104/0328351

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    2021_Dziewit_BMC PLANT BIOLOGY_602.pdf11.9 MBJinápovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.