Počet záznamů: 1  

Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2

  1. 1.
    0550777 - ÚVGZ 2022 RIV US eng J - Článek v odborném periodiku
    Arsić, Janko - Stojanović, Marko - Petrovičová, Lucia - Noyer, Estelle - Milanović, S. - Světlík, Jan - Horáček, Petr - Krejza, Jan
    Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2.
    PLoS ONE. Roč. 16, č. 10 (2021), č. článku e0259054. ISSN 1932-6203. E-ISSN 1932-6203
    Grant CEP: GA MŠMT(CZ) LM2018123
    Výzkumná infrastruktura: CzeCOS III - 90123
    Institucionální podpora: RVO:86652079
    Klíčová slova: carbon-dioxide * fagus-sylvatica * atmospheric co2 * anatomical responses * ecological factors * european forests * water transport * tree * nitrogen * drought
    Obor OECD: Environmental sciences (social aspects to be 5.7)
    Impakt faktor: 3.752, rok: 2021
    Způsob publikování: Open access
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259054

    Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.
    Trvalý link: http://hdl.handle.net/11104/0326085

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.