Počet záznamů: 1  

Elastic anisotropies of deformed upper crustal rocks in the Alps

  1. 1.
    0550771 - GLÚ 2022 RIV DE eng J - Článek v odborném periodiku
    Keppler, R. - Vasin, R. - Stipp, M. - Lokajíček, Tomáš - Petružálek, Matěj - Froitzheim, N.
    Elastic anisotropies of deformed upper crustal rocks in the Alps.
    Solid Earth. Roč. 12, č. 10 (2021), s. 2303-2326. ISSN 1869-9510. E-ISSN 1869-9529
    Grant CEP: GA ČR(CZ) GA18-08826S; GA ČR(CZ) GA21-26542S
    Institucionální podpora: RVO:67985831
    Klíčová slova: Elastic anisotropy * neutron diffraction * ultrasonic sounding * natural rocks
    Obor OECD: Environmental and geological engineering, geotechnics
    Impakt faktor: 3.923, rok: 2021
    Způsob publikování: Open access
    https://se.copernicus.org/articles/12/2303/2021/

    The crust within collisional orogens is very heterogeneous both in composition and grade of deformation, leading to highly variable physical properties at small scales. This causes difficulties for seismic investigations of tectonic structures at depth since the diverse and partially strong upper crustal anisotropy might overprint the signal of deeper anisotropic structures in the mantle. In this study, we characterize the range of elastic anisotropies of deformed crustal rocks in the Alps. Furthermore, we model average elastic anisotropies of these rocks and their changes with increasing depth due to the closure of microcracks. For that, pre-Alpine upper crustal rocks of the Adula Nappe in the central Alps, which were intensely deformed during the Alpine orogeny, were sampled. The two major rock types found are orthogneisses and paragneisses, however, small lenses of metabasites and marbles also occur. Crystallographic preferred orientations (CPOs) and volume fractions of minerals in the samples were measured using time-of-flight neutron diffraction. Combined with single crystal elastic anisotropies these were used to model seismic properties of the rocks. The sample set shows a wide range of different seismic velocity patterns even within the same lithology, due to the microstructural heterogeneity of the deformed crustal rocks. To approximate an average for these crustal units, we picked common CPO types of rock forming minerals within gneiss samples representing the most common lithology. These data were used to determine an average elastic anisotropy of a typical crustal rock within the Alps. Average mineral volume percentages within the gneiss samples were used for the calculation. In addition, ultrasonic anisotropy measurements of the samples at increasing confining pressures were performed. These measurements as well as the microcrack patterns determined in thin sections were used to model the closure of microcracks in the average sample at increasing depth. Microcracks are closed at approximately 740 MPa yielding average elastic anisotropies of 4 % for the average gneiss. This value is an approximation, which can be used for seismic models at a lithospheric scale. At a crustal or smaller scale, however, local variations in lithology and deformation as displayed by the range of elastic anisotropies within the sample set need to be considered. In addition, larger-scale structural anisotropies such as layering, intrusions and brittle faults have to be included in any crustal-scale seismic model.
    Trvalý link: http://hdl.handle.net/11104/0327509

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.