Počet záznamů: 1  

Observations and Simulations of Dropout Events and Flux Decays in October 2013: Comparing MEO Equatorial With LEO Polar Orbit

  1. 1.
    0544529 - ÚFA 2022 RIV US eng J - Článek v odborném periodiku
    Pierrard, V. - Ripoll, J.-F. - Cunningham, G. - Botek, E. - Santolík, Ondřej - Thaller, S. - Kurth, W. S. - Cosmides, M.
    Observations and Simulations of Dropout Events and Flux Decays in October 2013: Comparing MEO Equatorial With LEO Polar Orbit.
    Journal of Geophysical Research-Space Physics. Roč. 126, č. 6 (2021), č. článku e2020JA028850. ISSN 2169-9380. E-ISSN 2169-9402
    GRANT EU: European Commission(XE) 870437 - SafeSpace
    Institucionální podpora: RVO:68378289
    Klíčová slova: radiation-belt electrons * earths inner magnetosphere * plasmaspheric hiss * magnetic-field * relativistic electrons
    Obor OECD: Fluids and plasma physics (including surface physics)
    Impakt faktor: 3.111, rok: 2021
    Způsob publikování: Open access
    https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JA028850

    We compare ESA PROBA-V observations of electron flux at LEO with those from the NASA Van Allen Probes mostly at MEO for October 2013. Dropouts are visible at all energy during four storms from both satellites. Equatorially trapped electron fluxes are higher than at LEO by 10(2) (<1 MeV) to 10(5) (>2.5 MeV). We observe a quite isotropic structure of the outer belt during quiet times, contrary to the inner belt, and pitch angle dependence of high energy injection. We find a very good overlap of the outer belt at MEO and LEO at similar to 0.5 MeV. We use test-particle simulations of the energetic electrons trapped in the terrestrial magnetic field to study the outer radiation belt electron flux changes during geomagnetic storms. We show that the Dst (Disturbance storm time) effect during the main phase of a geomagnetic storm results in a betatron mechanism causing outward radial drift and a deceleration of the electrons. This outward drift motion is energy independent, pitch angle-dependent, and represents a significant distance (similar to 1 L-shell at L = 5 for moderate storms). At fixed L-shell, this causes a decay of the LEO precipitating flux (adiabatic outward motion), followed by a return to the normal state (adiabatic inward motion) during main and recovery phases. Dst effect, associated with magnetopause shadowing and radial diffusion can explain the main characteristics of outer radiation belt electron dropouts in October 2013. We also use Fokker-Planck simulations with event-driven diffusion coefficients at high temporal resolution, to distinguish instantaneous loss from the gradual scattering that depopulates the slot region and the outer belt after storms. Simulations reproduce the slot formation and the gradual loss in the outer belt. The typical energy dependence of these losses leads to the absence of scattering for relativistic and ultra-relativistic electrons in the outer belt, oppositely to dropouts.
    Trvalý link: http://hdl.handle.net/11104/0321370

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0544529_JGR_Santolík_2021.pdf14 MBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.