Počet záznamů: 1  

Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids

  1. 1.
    0537038 - MBÚ 2021 RIV US eng J - Článek v odborném periodiku
    Raven, J. A. - Suggett, D.J. - Giordano, Mario
    Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids.
    Journal of Phycology. Roč. 56, č. 6 (2020), s. 1377-1397. ISSN 0022-3646. E-ISSN 1529-8817
    Grant CEP: GA ČR(CZ) GA17-18917S
    Institucionální podpora: RVO:61388971
    Klíčová slova: chromerids * corals * dinoflagellates * inorganic carbon concentrating mechanisms * mixotrophy
    Obor OECD: Plant sciences, botany
    Impakt faktor: 2.923, rok: 2020
    Způsob publikování: Omezený přístup
    https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.13050

    Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO(2)availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved, isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
    Trvalý link: http://hdl.handle.net/11104/0314794

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.