Počet záznamů: 1  

Warming erodes individual-level variability in life history responses to predation risk in larvae of the mayfly Cloeon dipterum

  1. 1.
    0536657 - BC 2021 RIV GB eng J - Článek v odborném periodiku
    Šupina, J. - Bojková, J. - Boukal, David S.
    Warming erodes individual-level variability in life history responses to predation risk in larvae of the mayfly Cloeon dipterum.
    Freshwater Biology. Roč. 65, č. 12 (2020), s. 2211-2223. ISSN 0046-5070. E-ISSN 1365-2427
    Grant CEP: GA ČR(CZ) GA14-29857S
    Institucionální podpora: RVO:60077344
    Klíčová slova: climate change * cohort splitting * development
    Obor OECD: Entomology
    Impakt faktor: 3.809, rok: 2020
    Způsob publikování: Omezený přístup
    https://onlinelibrary.wiley.com/doi/10.1111/fwb.13619

    1. Warming and predation risk are ubiquitous environmental factors that can modify life histories and population dynamics of aquatic ectotherms. While separate responses
    to each of these factors are well understood, their joint effects on individual life histories and population dynamics remain largely unexplored. Current theory predicts that the magnitude of prey behavioural, physiological, and life history responses to predation risk should diminish with warming due to the reduced metabolic scope. However, empirical support for this prediction remains equivocal, and experiments covering a substantial proportion of individual prey ontogeny until maturation are lacking.
    2. To fill these gaps, we ran a laboratory experiment to investigate how warming and non-consumptive predation risk influence life history responses in the larvae of the mayfly Cloeon dipterum, an aquatic insect with highly plastic development. We reared larvae of varying initial sizes at three temperatures (21, 24, and 27°C) in a risk-free environment and under predation risk signalled by chemical cues from dragonfly larvae (Aeshna cyanea), and followed their individual survival, growth, and development until emergence.
    3. Some C. dipterum larvae substantially prolonged their development and the proportion of these slow individuals declined rapidly with temperature and increased with predation risk. We attribute this response to cohort splitting, a common life history strategy of aquatic insects and other taxa in unpredictable environment.
    4. Growth, development, and maturation varied predictably with temperature in the fast larvae that did not prolong their development. They grew and developed faster but matured at smaller sizes with increasing temperature. Predation risk tended to slow down individual growth and development in line with the reduced metabolic scope hypothesis, but the differences were relatively minor and observable only at 21°C.
    5. Survival to subimago increased with predation risk, possibly due to indirect effects mediated by dissolved micronutrients, but did not vary significantly with temperature. Survival also tended to be higher in the slow individuals. This partly compensated for a smaller final size relative to the fast individuals and made both strategies comparable in overall fitness.
    Trvalý link: http://hdl.handle.net/11104/0316035

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.