Počet záznamů: 1  

Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains

  1. 1.
    0532706 - MÚ 2021 RIV GB eng J - Článek v odborném periodiku
    Kreml, Ondřej - Nečasová, Šárka - Piasecki, T.
    Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains.
    Proceedings of the Royal Society of Edinburgh. A - Mathematics. Roč. 150, č. 5 (2020), s. 2255-2300. ISSN 0308-2105. E-ISSN 1473-7124
    Grant CEP: GA MŠk(CZ) 7AMB16PL060; GA ČR(CZ) GA17-01747S
    Institucionální podpora: RVO:67985840
    Klíčová slova: compressible Navier-Stokes equations * local existence * strong solution * time-dependent domain * weak-strong uniqueness
    Obor OECD: Pure mathematics
    Impakt faktor: 1.319, rok: 2020
    Způsob publikování: Omezený přístup
    https://doi.org/10.1017/prm.2018.165

    We consider the compressible Navier–Stokes system on time-dependent domains with prescribed motion of the boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain and an existence theorem for Navier–Stokes like systems with lower order terms and perturbed boundary conditions. We also show the weak–strong uniqueness principle for slip boundary conditions which remained so far open question.
    Trvalý link: http://hdl.handle.net/11104/0311118

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kreml3.pdf1503.8 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1