Počet záznamů: 1  

On the air atmospheric pressure plasma treatment effect on the physiology, germination and seedlings of basil seeds

  1. 1.
    0525649 - ÚFP 2021 RIV GB eng J - Článek v odborném periodiku
    Ambrico, P. F. - Šimek, Milan - Ambrico, M. - Morano, M. - Prukner, Václav - Minafra, A. - Allegretta, I. - Porfido, C. - Senesi, G. S. - Terzano, D.
    On the air atmospheric pressure plasma treatment effect on the physiology, germination and seedlings of basil seeds.
    Journal of Physics D-Applied Physics. Roč. 53, č. 10 (2020), č. článku 104001. ISSN 0022-3727. E-ISSN 1361-6463
    Institucionální podpora: RVO:61389021
    Klíčová slova: Air plasma * Dielectric barrier discharge * Germination * Plasma agriculture * Plasma-induced emission * Seeds
    Obor OECD: Biophysics
    Impakt faktor: 3.207, rok: 2020
    Způsob publikování: Omezený přístup
    https://iopscience.iop.org/article/10.1088/1361-6463/ab5b1b

    Basil (Ocimum basilicum) seeds were treated for different exposure times with a non-equilibrium plasma produced by a volume dielectric barrier discharge in humid air at atmospheric pressure. Plasma treatment did not change the seed structure and morphology, as visualized by high-resolution computed X-ray microtomography. A faster and higher germination rate was observed with plasma treatment of 1 and 3 min. Plantlets grown in sand, after both 2 and 3 weeks, showed a more developed root apparatus and better biometric parameters, compared to plants developing from non-treated seeds. After the plasma treatment, internal redistribution of macro and micronutrients was observed by using micro X-ray fluorescence spectroscopy. In particular P, K and Mg concentrated in the radicle, moving from the endosperm and cotyledons, while Zn, initially concentrated in specific tissues of the cotyledon, appeared more homogeneously distributed inside the whole seed after the plasma treatment. Significant variations in electrical impedance spectra were also observed after plasma treatment. This element redistribution in the seed was caused by the intense electrical field generated by the volume dielectric barrier discharge plasma, causing a movement of important micro and macronutrients from the storage regions of the seed towards the radicle tissues. This ion movement could explain the observed faster germination of the plasma-treated seeds. Indeed, such movement of ions is similar to what is generally observed in seed tissues during germination. The plasma treatment therefore somehow anticipates and implements the mobilization of key nutrients towards the radicle, resulting in faster and higher germination of the seeds as well as improved characteristics of the basil plantlet, especially at the root level.
    Trvalý link: http://hdl.handle.net/11104/0309762

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.