Počet záznamů: 1  

Nanosecond Pulsed Electric Field Lab-on-Chip Integrated in Super-Resolution Microscope for Cytoskeleton Imaging

  1. 1.
    0524260 - ÚFE 2021 RIV US eng J - Článek v odborném periodiku
    Havelka, Daniel - Chafai, Djamel Eddine - Krivosudský, Ondrej - Klebanovych, Anastasiya - Vostárek, František - Kubínová, Lucie - Dráber, Pavel - Cifra, Michal
    Nanosecond Pulsed Electric Field Lab-on-Chip Integrated in Super-Resolution Microscope for Cytoskeleton Imaging.
    Advanced Materials Technologies. Roč. 5, č. 3 (2020), č. článku 1900669. ISSN 2365-709X. E-ISSN 2365-709X
    Grant CEP: GA ČR GA18-23597S; GA ČR(CZ) GA17-11898S; GA MŠMT(CZ) LM2015062; GA ČR(CZ) GA19-20716S
    Grant ostatní: AV ČR(CZ) SAV-18-11
    Program: Bilaterální spolupráce
    Výzkumná infrastruktura: Czech-BioImaging - 90062
    Institucionální podpora: RVO:67985882 ; RVO:67985823 ; RVO:68378050
    Klíčová slova: chips * electromagnetics * microtubules * nsPEF
    Obor OECD: Biophysics; Cell biology (FGU-C); Biophysics (UMG-J)
    Impakt faktor: 7.848, rok: 2020
    Způsob publikování: Omezený přístup
    https://doi.org/10.1002/admt.201900669

    Nanosecond pulsed electric field offers novel opportunities in bionanotechnology and biomedicine enabling ultrafast physical control of membrane, and protein-based processes for the development of novel bionanomaterials and biomedical theranostic methods. However, the mechanisms of nanosecond pulsed electric field action at the nano- and molecular scale are not fully understood due to lack of appropriate research tools. In order to overcome this challenge, a technological platform for the exploration of these mechanisms in live biological samples is provided here. This paper describes step by step the proposed chip platform, including the design, fabrication, installation, and testing of the chip. The developed chip is capable of delivering hundreds of volts of nanosecond electric pulses compared to conventional chips using few volts. Moreover, the chip is fully integrated into a super-resolution microscope. Later on, the chip function is demonstrated by affecting microtubule architecture in living cells. Therefore, the chip-based technological advancement enables the assessment of pulsed electric field effects on bionanostructures and observing their effects in real-time. The results contribute to the chip-based high-frequency bioelectronics technology for modulating the function of biological matter at the nanoscale level
    Trvalý link: http://hdl.handle.net/11104/0308642

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    UFE 0524260.pdf06.3 MBJinávyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.