Počet záznamů: 1  

Generalised dissipative particle dynamics with energy conservation: density- and temperature dependent potentials.

  1. 1.
    0511363 - ÚCHP 2020 RIV GB eng J - Článek v odborném periodiku
    Avalos, J.B. - Lísal, Martin - Larentzos, J.P. - Mackie, A.D. - Brennan, J.K.
    Generalised dissipative particle dynamics with energy conservation: density- and temperature dependent potentials.
    Physical Chemistry Chemical Physics. Roč. 21, č. 45 (2019), s. 24891-24911. ISSN 1463-9076. E-ISSN 1463-9084
    Grant ostatní: MCIU(ES) CTQ2017-84998-P; ONR(US) 12-001
    Institucionální podpora: RVO:67985858
    Klíčová slova: heat * simulation * fluid
    Obor OECD: Physical chemistry
    Impakt faktor: 3.430, rok: 2019
    Způsob publikování: Omezený přístup

    We present a generalised, energy-conserving dissipative particle dynamics (DPDE) method appropriate for the non-isothermal simulation of particle interaction force fields that are both density- and temperaturedependent. A detailed derivation is formulated in a bottom-up manner by considering the thermodynamics of small systems with the appropriate consideration of the fluctuations. Connected to the local volume is a local density and corresponding local pressure, which is determined from an equation-of-state based force field that depends also on a particle temperature. Compared to the original DPDE method, the formulation of the generalised DPDE method requires a change in the independent variable from the particle internal
    energy to the particle entropy. As part of the re-formulation, the terms dressed particle entropy and the corresponding dressed particle temperature are introduced, which depict the many-body contributions in the local volume. The generalised DPDE method has similarities to the energy form of the smoothed dissipative particle dynamics method, yet fundamental differences exist, which are described in the manuscript. The basic dynamic equations are presented along with practical considerations for implementing the generalised DPDE method, including a numerical integration scheme based on the Shardlow-like splitting algorithm. Demonstrations and validation tests are performed using analytical equation-of-states for the van der Waals and Lennard-Jones fluids. Particle probability distributions are analysed, where excellent agreement with theoretical estimates is demonstrated. As further validation of the generalised DPDE method, both equilibrium and non-equilibrium simulation scenarios are considered, including adiabatic flash heating response and vapour–liquid phase separation.
    Trvalý link: http://hdl.handle.net/11104/0305539

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0511363.pdf03 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.