Počet záznamů: 1  

A New Standard DNA Damage (SDD) Data Format

  1. 1.
    0504301 - ÚJF 2020 RIV US eng J - Článek v odborném periodiku
    Schuemann, J. - McNamara, A. L. - Warmenhoven, J. W. - Henthorn, N. T. - Kirkby, K. J. - Merchant, M. J. - Ingram, S. - Paganetti, H. - Held, K. D. - Ramos-Mendez, J. - Faddegon, B. - Perl, J. - Goodhead, D. T. - Plante, I. - Rabus, H. - Nettelbeck, H. - Friedland, W. - Kundrát, P. - Ottolenghi, A. - Baiocco, G. - Barbieri, S. - Dingfelder, M. - Incerti, S. - Villagrasa, C. - Bueno, M. - Bernal, M. A. - Guatelli, S. - Sakata, D. - Brown, J. M. C. - Francis, Z. - Kyriakou, I. - Lampe, N. - Ballarini, F. - Carante, M. P. - Davídková, Marie - Štěpán, Václav - Jia, X. - Cucinotta, F. A. - Schulte, R. - Steward, R. - Carlson, D. J. - Galer, S. - Kuncic, Z. - Lacombe, S. - Milligan, J. - Cho, S. H. - Sawakuchi, G. - Inaniwa, T. - Sato, T. - Li, W. - Solov'ev, A. V. - Surdutovich, E. - Durante, M. - Prise, K. M. - McMahon, S. J.
    A New Standard DNA Damage (SDD) Data Format.
    Radiation Research. Roč. 191, č. 1 (2019), s. 76-92. ISSN 0033-7587. E-ISSN 1938-5404
    Institucionální podpora: RVO:61389005
    Klíčová slova: DNA damage * Monte Carlo method * DNA repair
    Obor OECD: Biophysics
    Impakt faktor: 2.657, rok: 2019
    Způsob publikování: Open access
    https://doi.org/10.1667/RR15209.1

    Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called 'indirect' damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.
    Trvalý link: http://hdl.handle.net/11104/0295970

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0504301.pdf81.5 MBOpen Access - BioOneVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.