Počet záznamů: 1  

Strong suppression of near-field radiative heat transfer by superconductivity in NbN

  1. 1.
    0501517 - ÚPT 2019 RIV US eng J - Článek v odborném periodiku
    Musilová, Věra - Králík, Tomáš - Fořt, Tomáš - Macek, Michal
    Strong suppression of near-field radiative heat transfer by superconductivity in NbN.
    Physical Review B. Roč. 99, č. 2 (2019), č. článku 024511. ISSN 2469-9950. E-ISSN 2469-9969
    Grant CEP: GA ČR(CZ) GA14-07397S; GA MŠMT(CZ) LO1212
    Institucionální podpora: RVO:68081731
    Klíčová slova: near fields * radiative heat transfer * near-field radiative
    Obor OECD: Thermodynamics
    Impakt faktor: 3.575, rok: 2019
    Způsob publikování: Omezený přístup
    https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.024511

    Near-field (NF) radiative heat transfer (RHT) over vacuum space between closely spaced bodies can exceed the Planck's far-field (FF) values by orders of magnitude. A strong effect of superconductivity on NF RHT between plane-parallel thin-film surfaces of niobium (Nb) was recently discovered and discussed in a short paper [T. Kralik et al., Phys. Rev. B 95, 060503 (2017)]. We present here an extensive set of experimental results on NF as well as FF RHT for geometrically identical samples made of niobium nitride (NbN), including a detailed discussion of the experimental setup and errors. The results with NbN show more precise agreement with theory than the original experiments with Nb. We observed a steep decrease of the heat flux at the transition to superconductivity when the colder sample (absorber) passed from the normal to the superconducting (SC) state (T-c approximate to 15.2 K), corresponding to an up to eightfold contrast between the normal and SC states. This differs dramatically from the situation in the FF regime, where only a weak effect of superconductivity was observed. Surprisingly, the contrast remains sizable even at high temperatures of the hot sample (radiator) with the characteristic energy of radiation far above the SC energy gap. We explain the maximum of contrast in heat flux between the normal and SC states, found at a distance about ten times shorter than the crossover distance between NF and FF heat flux, being d approximate to 1000/ T [mu m]. We analyze in detail the roles of transversal electric (TE) and magnetic (TM) modes in the steep decrease of heat flux below the SC critical temperature and the subsequent flux saturation at low temperatures. Interestingly, we expose experimentally the effect of destructive interference of FF thermal radiation in the vacuum gap, which was observable at temperatures below the absorber superconducting transition.
    Trvalý link: http://hdl.handle.net/11104/0293532

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.