Počet záznamů: 1  

Universal behavior of diatomic halo states and the mass sensitivity of their properties

  1. 1.
    0501473 - ÚOCHB 2020 RIV GB eng J - Článek v odborném periodiku
    Owens, A. - Špirko, Vladimír
    Universal behavior of diatomic halo states and the mass sensitivity of their properties.
    Journal of Physics B-Atomic Molecular and Optical Physics. Roč. 52, č. 2 (2019), č. článku 025102. ISSN 0953-4075. E-ISSN 1361-6455
    Grant CEP: GA ČR GBP106/12/G015
    Institucionální podpora: RVO:61388963
    Klíčová slova: interatomic and molecular potentials * quantum halo states * molecular physics
    Obor OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
    Impakt faktor: 1.703, rok: 2019
    Způsob publikování: Omezený přístup
    https://iopscience.iop.org/article/10.1088/1361-6455/aaf5f9

    The scattering and spectroscopic properties of molecular halo states can serve as sensitive probes of the constancy of the electron-to-proton mass ratio beta = m(e)/m(p). Since halo states are formed by resonant s-wave interactions, their properties exhibit universal correlations that are fairly independent of the interactions at short distances. For diatomic molecules, these properties depend on a single-parameter only, and so this 'universality' means that all the characteristics of a diatomic halo state can be determined with high precision if only one-parameter is accurately known. Furthermore, this knowledge can be used to establish the respective property mass sensitivities for investigating the stability of beta. Here, we show for the halo states of the helium dimers that the relationship between the probed properties and their mass sensitivity can be derived from numerically exact solutions of suitable radial Schrodinger equations for a set of effective potential energy curves. The resulting relations exhibit a weak dependence on the short-range part of the used potentials and a near-negligible dependence on the 'higher-order' nonadiabatic, relativistic, quantum electrodynamical and residual retardation effects. The presented approach is thus a robust alternative to other literature approaches, particularly in cases where a lack of experimental data prevents an accurate interaction potential from being determined.
    Trvalý link: http://hdl.handle.net/11104/0296271

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.