Počet záznamů: 1  

Prediction of the critical energy release rate of nanostructured solids using the laplacian version of the strain gradient elasticity theory

  1. 1.
    0493538 - ÚFM 2019 RIV CH eng C - Konferenční příspěvek (zahraniční konf.)
    Kotoul, M. - Skalka, P. - Profant, T. - Friák, Martin - Řehák, P. - Šesták, P.
    Prediction of the critical energy release rate of nanostructured solids using the laplacian version of the strain gradient elasticity theory.
    Advances in Fracture and Damage Mechanics XVII. Zürich: Trans Tech Publications, 2018 - (Aliabadi, F.; Rodriguez-Tembleque, L.; Dominguez, J.), s. 447-452. Key Engineering Materials, 774. ISBN 978-3-0357-1350-3. ISSN 1013-9826.
    [FDM 2018 - International Conference on Fracture and Damage Mechanics /17./. Bangkok (TH), 04.09.2018-06.09.2018]
    Institucionální podpora: RVO:68081723
    Klíčová slova: Fracture nanomechanics * Size dependent phenomena * Strain * Elasticity
    Obor OECD: Condensed matter physics (including formerly solid state physics, supercond.)

    The aim of the paper is quantify the material length scale parameter of the simplified form of the strain gradient elasticity theory (SGET) using first principles density-functional theory (DFT). The single material length scale parameter l is extracted from phonon-dispersions generated by DFT calculations and, for comparison, by adjusting the analytical SGET solution for the displacement field near the screw dislocation with the DFT calculations of this field. The obtained results are further used in the SGET modeling of cracked nano-panel formed by the single tungsten crystal where due to size effects and nonlocal material point interactions the classical fracture mechanics breaks down.
    Trvalý link: http://hdl.handle.net/11104/0289455

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.