Počet záznamů: 1  

Calculus for Directional Limiting Normal Cones and Subdifferentials

  1. 1.
    0493120 - ÚTIA 2020 RIV NL eng J - Článek v odborném periodiku
    Benko, M. - Gfrerer, H. - Outrata, Jiří
    Calculus for Directional Limiting Normal Cones and Subdifferentials.
    Set-Valued and Variational Analysis. Roč. 27, č. 3 (2019), s. 713-745. ISSN 1877-0533. E-ISSN 1877-0541
    Grant CEP: GA ČR GA17-04301S; GA ČR GA17-08182S
    Institucionální podpora: RVO:67985556
    Klíčová slova: Generalized differential calculus * Directional limiting normal cone * Directional limiting subdifferential * Qualification conditions
    Obor OECD: Pure mathematics
    Impakt faktor: 1.476, rok: 2019 ; AIS: 0.751, rok: 2019
    Způsob publikování: Open access
    Web výsledku:
    http://library.utia.cas.cz/separaty/2018/MTR/outrata-0493120.pdf https://link.springer.com/article/10.1007%2Fs11228-018-0492-5

    DOI: https://doi.org/10.1007/s11228-018-0492-5

    The paper is devoted to the development of a comprehensive calculus for directional limiting normal cones, subdifferentials and coderivatives in finite dimensions. This calculus encompasses the whole range of the standard generalized differential calculus for (non-directional) limiting notions and relies on very weak (non-restrictive) qualification conditions having also a directional character. The derived rules facilitate the application of tools exploiting the directional limiting notions to difficult problems of variational analysis including, for instance, various stability and sensitivity issues. This is illustrated by some selected applications in the last part of the paper.
    Trvalý link: http://hdl.handle.net/11104/0286550


     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.