Počet záznamů: 1  

Fossilized Melts in Mantle Wedge Peridotites

  1. 1.
    0491911 - GLÚ 2019 RIV GB eng J - Článek v odborném periodiku
    Naemura, K. - Hirajima, T. - Svojtka, Martin - Schimizu, I. - Iizuka, T.
    Fossilized Melts in Mantle Wedge Peridotites.
    Scientific Reports. Roč. 8, July 4 2018 (2018), č. článku 10116. ISSN 2045-2322. E-ISSN 2045-2322
    Institucionální podpora: RVO:67985831
    Klíčová slova: trace-element * garnet peridotites * carbonatite melts * fluid inclusions * subduction zonen * Ulten zone * ICP-MS * metasomatism * GPA * origin
    Obor OECD: Geology
    Impakt faktor: 4.011, rok: 2018

    The shallow oxidized asthenosphere may contain a small fraction of potassic silicate melts that are enriched in incompatible trace elements and volatiles. Here, to determine the chemical composition of such melt, we analysed fossilized melt inclusions, preserved as multiphase solid inclusions, from an orogenic garnet peridotite in the Bohemian Massif. Garnet-poor (2 vol.%) peridotite preserves inclusions of carbonated potassic silicate melt within Zn-poor chromite (<400 ppm) in the clinopyroxene-free harzburgite assemblage that equilibrated within the hot mantle wedge (Stage 1, >1180 degrees C at 3 GPa). The carbonated potassic silicate melt, which has a major element oxide chemical composition of K2O = 5.2 wt.%, CaO = 17 wt.%, MgO = 18 wt.%, CO2 = 22 wt.%, and SiO2 = 20 wt.%, contains extremely high concentrations of large ion lithophile elements, similar to kimberlite melts. Peridotites cooled down to. 800 degrees C during Stage 2, resulted in the growth of garnet relatively poor in pyrope content, molar Mg/(Mg + Fe + Ca + Mn), (ca. 67 mol.%). This garnet displays a sinusoidal REE pattern that formed in equilibrium with carbonatitic fluid. Subsequently, subduction of the peridotite resulted in the formation of garnet with a slightly higher pyrope content (70 mol.%) during the Variscan subduction Stage 3 (950 degrees C, 2.9 GPa). These data suggest the following scenario for the generation of melt in the mantle wedge. Primarily, infiltration of sediment-derived potassic carbonatite melt into the deep mantle wedge resulted in the growth of phlogopite and carbonate/diamond. Formation of volatile-bearing minerals lowered the density and strength of the peridotite. Finally, phlogopite-bearing carbonated peridotite rose as diapirs in the mantle wedge to form carbonated potassic silicate melts at the base of the overriding lithosphere.
    Trvalý link: http://hdl.handle.net/11104/0285535

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.