Počet záznamů: 1  

Chemical Potentials of Alkaline Earth Metal Halide Aqueous Electrolytes and Solubility of Their Hydrates by Molecular Simulation: Application to CaCl2, Antarcticite, and Sinjarite.

  1. 1.
    0490437 - ÚCHP 2019 RIV US eng J - Článek v odborném periodiku
    Moučka, Filip - Kolafa, J. - Lísal, Martin - Smith, W. R.
    Chemical Potentials of Alkaline Earth Metal Halide Aqueous Electrolytes and Solubility of Their Hydrates by Molecular Simulation: Application to CaCl2, Antarcticite, and Sinjarite.
    Journal of Chemical Physics. Roč. 148, č. 22 (2018), č. článku 222832. ISSN 0021-9606. E-ISSN 1089-7690
    GRANT EU: European Commission(XE) 640979 - ShaleXenvironmenT
    Grant ostatní: NSERC(CA) STPGP 479466-15
    Institucionální podpora: RVO:67985858
    Klíčová slova: chemical potential * crystalline materials * electrolytes
    Obor OECD: Physical chemistry
    Impakt faktor: 2.997, rok: 2018

    We present a molecular-level simulation study of CaCl2 in water and crystalline hydrates formed by CaCl2 at ambient (298.15 K, 1 bar) conditions and at a high-temperature high-pressure state (365 K, 275 bars) typical of hydraulic fracturing conditions in natural-gas extraction, at which experimental properties are poorly characterized. We focus on simulations of chemical potentials in both solution and crystalline phases and on the salt solubility, the first time to our knowledge that such properties have been investigated by molecular simulation for divalent aqueous electrolytes. We first extend our osmotic ensemble Monte Carlo simulation technique to such solutions. We then describe and apply new methodology for the simulation of the chemical potentials of the experimentally observed crystalline hydrates at ambient conditions (antarcticite, CaCl2·6H2O) and at high-temperature conditions (sinjarite, CaCl2·2H2O). We implement our methodologies using for both phases the CaCl2 transferable force field (FF) based on simple point charge-extended water developed by Mamatkulov et al., based on training sets involving single-ion and ion-pair low-concentration solution properties at near-ambient conditions. We find that simulations of the solution chemical potentials at high concentrations are somewhat problematic, exhibiting densities diverging from experimental values and accompanied by dramatically decreasing particle mobility. For the solid phases, the sinjarite crystalline lattice differs from experiment only slightly, whereas the simulations of antarcticite completely fail, due to instability of the crystalline lattice. The FF thus only successfully yields the sinjarite solubility, but its value m = 8.0(7) mol kg-1H2O lies well below the experimentally observed solubility range at 1 bar pressure of (12m, 15m) in the temperature interval (320 K, 400 K). We conclude that the used FF does not provide a good description of the experimental properties considered and suggest that improvement must take into account the crystalline properties.
    Trvalý link: http://hdl.handle.net/11104/0285746

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0490437.pdf11.3 MBAutorský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.