Počet záznamů: 1
A wild model of linear arithmetic and discretely ordered modules
- 1.0484738 - MÚ 2018 RIV DE eng J - Článek v odborném periodiku
Glivický, Petr - Pudlák, Pavel
A wild model of linear arithmetic and discretely ordered modules.
Mathematical Logic Quarterly. Roč. 63, č. 6 (2017), s. 501-508. ISSN 0942-5616. E-ISSN 1521-3870
GRANT EU: European Commission(XE) 339691 - FEALORA
Institucionální podpora: RVO:67985840
Klíčová slova: linear arithmetics
Obor OECD: Pure mathematics
Impakt faktor: 0.522, rok: 2017 ; AIS: 0.405, rok: 2017
DOI: https://doi.org/10.1002/malq.201600012
Linear arithmetics are extensions of Presburger arithmetic (Pr) by one or more unary functions, each intended as multiplication by a fixed element (scalar), and containing the full induction schemes for their respective languages. In this paper, we construct a model M of the 2-linear arithmetic LA2 (linear arithmetic with two scalars) in which an infinitely long initial segment of Peano multiplication on M is phi-definable. This shows, in particular, that LA2 is not model complete in contrast to theories LA1 and LA0=Pr that are known to satisfy quantifier elimination up to disjunctions of primitive positive formulas. As an application, we show that M, as a discretely ordered module over the discretely ordered ring generated by the two scalars, does not have the NIP, answering negatively a question of Chernikov and Hils.
Trvalý link: http://hdl.handle.net/11104/0279883Název souboru Staženo Velikost Komentář Verze Přístup Glivicky1.pdf 2 170.3 KB Vydavatelský postprint vyžádat
Počet záznamů: 1