Počet záznamů: 1  

Magnetic properties of the CrMnFeCoNi high-entropy alloy

  1. 1.
    0478871 - ÚFM 2018 RIV US eng J - Článek v odborném periodiku
    Schneeweiss, Oldřich - Friák, Martin - Dudová, Marie - Holec, D. - Šob, Mojmír - Kriegner, D. - Holý, V. - Beran, Přemysl - George, E. P. - Neugebauer, J. - Dlouhý, Antonín
    Magnetic properties of the CrMnFeCoNi high-entropy alloy.
    Physical Review B. Roč. 96, č. 1 (2017), č. článku 014437. ISSN 2469-9950. E-ISSN 2469-9969
    Grant CEP: GA ČR(CZ) GA14-22834S; GA MŠMT(CZ) LQ1601
    Institucionální podpora: RVO:68081723 ; RVO:61389005
    Klíčová slova: high-entropy alloys * magnetism * low-temperatures * quantum-mechanical calculations * magnetic transitions
    Obor OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UFM-A); Condensed matter physics (including formerly solid state physics, supercond.) (UJF-V)
    Impakt faktor: 3.813, rok: 2017

    We present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006±0.001 emuT. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2microB), while the local moments of Ni atoms effectively vanish. These results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.
    Trvalý link: http://hdl.handle.net/11104/0275597

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.