Počet záznamů: 1
Epimorphisms in Varieties of Residuated Structures
- 1.0478590 - ÚI 2018 RIV US eng J - Článek v odborném periodiku
Bezhanishvili, G. - Moraschini, Tommaso - Raftery, J.G.
Epimorphisms in Varieties of Residuated Structures.
Journal of Algebra. Roč. 492, 15 December (2017), s. 185-211. ISSN 0021-8693. E-ISSN 1090-266X
Grant CEP: GA ČR GA17-04630S
Institucionální podpora: RVO:67985807
Klíčová slova: Epimorphism * Brouwerian algebra * Heyting algebra * Esakia space * Residuated lattice * Sugihara monoid * Substructural logic * Intuitionistic logic * Relevance logic * R-mingle * Beth definability
Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Impakt faktor: 0.675, rok: 2017 ; AIS: 0.733, rok: 2017
DOI: https://doi.org/10.1016/j.jalgebra.2017.08.023
It is proved that epimorphisms are surjective in a range of varieties of residuated structures, including all varieties of Heyting or Brouwerian algebras of finite depth, and all varieties consisting of Gödel algebras, relative Stone algebras, Sugihara monoids or positive Sugihara monoids. This establishes the infinite deductive Beth definability property for a corresponding range of substructural logics. On the other hand, it is shown that epimorphisms need not be surjective in a locally finite variety of Heyting or Brouwerian algebras of width 2. It follows that the infinite Beth property is strictly stronger than the so-called finite Beth property, confirming a conjecture of Blok and Hoogland.
Trvalý link: http://hdl.handle.net/11104/0274669
Název souboru Staženo Velikost Komentář Verze Přístup a0478590.pdf 9 598.3 KB Vydavatelský postprint vyžádat
Počet záznamů: 1