Počet záznamů: 1  

Spectral analysis of the diffusion operator with random jumps from the boundary

  1. 1.
    0466585 - ÚJF 2017 RIV DE eng J - Článek v odborném periodiku
    Kolb, M. - Krejčiřík, David
    Spectral analysis of the diffusion operator with random jumps from the boundary.
    Mathematische Zeitschrift. Roč. 284, 3-4 (2016), s. 877-900. ISSN 0025-5874. E-ISSN 1432-1823
    Grant CEP: GA ČR(CZ) GA14-06818S
    Institucionální podpora: RVO:61389005
    Klíčová slova: self-adjoint operators * eigenvalues * eigenfunctions
    Kód oboru RIV: BE - Teoretická fyzika
    Impakt faktor: 0.738, rok: 2016

    Using an operator-theoretic framework in a Hilbert-space setting, we perform a detailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific non-self-adjoint connected boundary conditions modelling a random jump from the boundary to a point inside the interval. In accordance with previous works, we find that all the eigenvalues are real. As the new results, we derive and analyse the adjoint operator, determine the geometric and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together with the generalised eigenfunctions and study their basis properties. It turns out that the latter heavily depend on whether the distance of the interior point to the centre of the interval divided by the length of the interval is rational or irrational. Finally, we find a closed formula for the metric operator that provides a similarity transform of the problem to a self-adjoint operator.
    Trvalý link: http://hdl.handle.net/11104/0264851
Počet záznamů: 1