Počet záznamů: 1  

Optimization with PDE Constraints

  1. 1.
    0433801 - ÚTIA 2015 RIV DE eng M - Část monografie knihy
    Outrata, Jiří - Beremlijski, P. - Haslinger, J. - Pathó, R.
    Numerical solution of 2D Contact Shape Optimization Problems Involving a Solution-Dependent Coefficient of Friction.
    Optimization with PDE Constraints. Heidelberg: Springer, 2014 - (Hoppe, R.), s. 1-24. Lecture Notes in Computational Science and Engineering, 101. ISBN 978-3-319-08024-6
    Grant CEP: GA ČR(CZ) GAP201/12/0671
    Institucionální podpora: RVO:67985556
    Klíčová slova: Frictional contact * Nonsmooth analysis * Shape optimization
    Obor OECD: Pure mathematics
    http://library.utia.cas.cz/separaty/2014/MTR/outrata-0433801.pdf

    This contribution deals with numerical solution of shape optimization problems in frictional contact mechanics. The state problem in our case is given by 2D static Signorini problems with Tresca friction and a solution-dependent coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient of friction is made, ensuring unique solvability of the discretized state problems and Lipschitz continuity of the corresponding control-to-state mapping. The discrete shape optimization problem can be transformed into a nonsmooth minimization problem and handled by the bundle trust method. In each step of the method, the state problem is solved by the method of successive approximations and necessary subgradient information is computed using the generalized differential calculus of B. Mordukhovich.
    Trvalý link: http://hdl.handle.net/11104/0239357

     
     
Počet záznamů: 1