Number of the records: 1  

Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest

  1. 1.
    SYSNO ASEP0555550
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleLong-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest
    Author(s) Vesala, T. (FI)
    Kohonen, K. (FI)
    Kooijmans, J. L. (NL)
    Praplan, A. (FI)
    Foltýnová, Lenka (UEK-B) ORCID, SAI, RID
    Kolari, P. (FI)
    Kulmala, M. (FI)
    Bäck, J. (FI)
    Nelson, D. (US)
    Yakir, D. (IL)
    Zahniser, M. (US)
    Mammarella, I. (FI)
    Number of authors12
    Source TitleAtmospheric Chemistry and Physics. - : Copernicus - ISSN 1680-7316
    Roč. 22, č. 4 (2022), s. 2569-2584
    Number of pages16 s.
    Languageeng - English
    CountryDE - Germany
    Keywordsland-surface model ; stomatal conductance ; wavelet transform ; scots pine ; cos ; water ; photosynthesis ; temperature ; consumption ; calibration
    Subject RIVDG - Athmosphere Sciences, Meteorology
    OECD categoryMeteorology and atmospheric sciences
    Research InfrastructureCzeCOS III - 90123 - Ústav výzkumu globální změny AV ČR, v. v. i.
    Method of publishingOpen access
    Institutional supportUEK-B - RVO:86652079
    UT WOS000763280100001
    EID SCOPUS85125877077
    DOI10.5194/acp-22-2569-2022
    AnnotationThe seasonality and interannual variability of terrestrial carbonyl sulfide (COS) fluxes are poorly constrained. We present the first easy-to-use parameterization for the net COS forest sink based on the longest existing eddy covariance record from a boreal pine forest, covering 32 months over 5 years. Fluxes from hourly to yearly scales are reported, with the aim of revealing controlling factors and the level of interannual variability. The parameterization is based on the photosynthetically active radiation, vapor pressure deficit, air temperature, and leaf area index. Wavelet analysis of the ecosystem fluxes confirmed earlier findings from branch-level fluxes at the same site and revealed a 3 h lag between COS uptake and air temperature maxima at the daily scale, whereas no lag between radiation and COS flux was found. The spring recovery of the flux after the winter dormancy period was mostly governed by air temperature, and the onset of the uptake varied by 2 weeks. For the first time, we report a significant reduction in ecosystem-scale COS uptake under a large water vapor pressure deficit in summer. The maximum monthly and weekly median COS uptake varied by 26% and 20% between years, respectively. The timing of the latter varied by 6 weeks. The fraction of the nocturnal uptake remained below 21% of the total COS uptake. We observed the growing season (April-August) average net flux of COS totaling58 :0 gS ha(-1) with 37% interannual variability. The long-term flux observations were scaled up to evergreen needleleaf forests (ENFs) in the whole boreal region using the Simple Biosphere Model Version 4 (SiB4). The observations were closely simulated using SiB4 meteorological drivers and phenology. The total COS uptake by boreal ENFs was in line with a missing COS sink at high latitudes pointed out in earlier studies.
    WorkplaceGlobal Change Research Institute
    ContactNikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268
    Year of Publishing2023
    Electronic addresshttps://acp.copernicus.org/articles/22/2569/2022/acp-22-2569-2022-discussion.html
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.