Number of the records: 1  

Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest

  1. 1.
    0555550 - ÚVGZ 2023 RIV DE eng J - Journal Article
    Vesala, T. - Kohonen, K. - Kooijmans, J. L. - Praplan, A. - Foltýnová, Lenka - Kolari, P. - Kulmala, M. - Bäck, J. - Nelson, D. - Yakir, D. - Zahniser, M. - Mammarella, I.
    Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest.
    Atmospheric Chemistry and Physics. Roč. 22, č. 4 (2022), s. 2569-2584. ISSN 1680-7316. E-ISSN 1680-7324
    Research Infrastructure: CzeCOS III - 90123
    Institutional support: RVO:86652079
    Keywords : land-surface model * stomatal conductance * wavelet transform * scots pine * cos * water * photosynthesis * temperature * consumption * calibration
    OECD category: Meteorology and atmospheric sciences
    Impact factor: 6.3, year: 2022
    Method of publishing: Open access
    https://acp.copernicus.org/articles/22/2569/2022/acp-22-2569-2022-discussion.html

    The seasonality and interannual variability of terrestrial carbonyl sulfide (COS) fluxes are poorly constrained. We present the first easy-to-use parameterization for the net COS forest sink based on the longest existing eddy covariance record from a boreal pine forest, covering 32 months over 5 years. Fluxes from hourly to yearly scales are reported, with the aim of revealing controlling factors and the level of interannual variability. The parameterization is based on the photosynthetically active radiation, vapor pressure deficit, air temperature, and leaf area index. Wavelet analysis of the ecosystem fluxes confirmed earlier findings from branch-level fluxes at the same site and revealed a 3 h lag between COS uptake and air temperature maxima at the daily scale, whereas no lag between radiation and COS flux was found. The spring recovery of the flux after the winter dormancy period was mostly governed by air temperature, and the onset of the uptake varied by 2 weeks. For the first time, we report a significant reduction in ecosystem-scale COS uptake under a large water vapor pressure deficit in summer. The maximum monthly and weekly median COS uptake varied by 26% and 20% between years, respectively. The timing of the latter varied by 6 weeks. The fraction of the nocturnal uptake remained below 21% of the total COS uptake. We observed the growing season (April-August) average net flux of COS totaling58 :0 gS ha(-1) with 37% interannual variability. The long-term flux observations were scaled up to evergreen needleleaf forests (ENFs) in the whole boreal region using the Simple Biosphere Model Version 4 (SiB4). The observations were closely simulated using SiB4 meteorological drivers and phenology. The total COS uptake by boreal ENFs was in line with a missing COS sink at high latitudes pointed out in earlier studies.
    Permanent Link: http://hdl.handle.net/11104/0330442

     
    FileDownloadSizeCommentaryVersionAccess
    Vesala-2022-Long-term-fluxes-of-carbonyl-sulfid.pdf104.2 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.