Number of the records: 1  

A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels

  1. 1.
    0497603 - ÚPT 2019 RIV GB eng J - Journal Article
    Őzbakir, Y. - Jonáš, Alexandr - Kiraz, A. - Erkey, C.
    A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels.
    Royal Society Open Science. Roč. 5, č. 11 (2018), č. článku 180802. ISSN 2054-5703. E-ISSN 2054-5703
    Institutional support: RVO:68081731
    Keywords : microphotoreactors * photochemistry * aerogels * nanostructured materials * optofluidic waveguides
    OECD category: Chemical process engineering
    Impact factor: 2.515, year: 2018

    In this study, we developed a new type of microphotoreactor based on an optofluidic waveguide with aqueous liquid core fabricated inside a nanoporous aerogel. To this end, we synthesized a hydrophobic silica aerogel monolith with a density of 0.22 g cm(-3) and a low refractive index of 1.06 that-from the optical point of view-effectively behaves like solid air. Subsequently, we drilled an L-shaped channel within the monolith that confined both the aqueous core liquid and the guided light, the latter property arising due to total internal reflection of light from the liquid-aerogel interface. We characterized the efficiency of light guiding in liquid-filled channel and-using the light delivered by waveguiding-we carried out photochemical reactions in the channel filled with aqueous solutions of methylene blue dye. We demonstrated that methylene blue could be efficiently degraded in the optofluidic photoreactor, with conversion increasing with increasing power of the incident light. The presented optofluidic microphotoreactor represents a versatile platform employing light guiding concept of conventional optical fibres for performing photochemical reactions.
    Permanent Link: http://hdl.handle.net/11104/0290149

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.