Number of the records: 1
Growth Model and Metabolic Activity of Brewing Yeast Biofilm on the Surface of Spent Grains: A Biocatalyst for Continuous Beer Fermentation
- 1.0105036 - UCHP-M 20040290 RIV US eng J - Journal Article
Brányik, T. - Vicente, A. A. - Kuncová, Gabriela - Podrazký, Ondřej - Dostálek, P. - Teixeira, J. A.
Growth Model and Metabolic Activity of Brewing Yeast Biofilm on the Surface of Spent Grains: A Biocatalyst for Continuous Beer Fermentation.
[Růstový model a a metabolická aktivita biofilmu z pivovarských kvasinek na povrchu mláta: Biokatalyzátor pro kontinuální fermentaci piva.]
Biotechnology Progress. Roč. 6, č. 20 (2004), s. 1733-1740. ISSN 8756-7938. E-ISSN 1520-6033.
[International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha, 22.08.2004-26.08.2004]
Grant - others:SFRH(PT) BPD/3541/2000
Institutional research plan: CEZ:AV0Z4072921
Keywords : growth model * beer fermentation * immobilized cells
Subject RIV: CE - Biochemistry
Impact factor: 1.635, year: 2004
In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition, immobilized cell growth, and immobilized biomass detachment was formulated. The concept of the active fraction of immobilized biomass and the maximum attainable biomass load was included into the model. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.
Byl vytvořen matematický model růstu biofilmu na povrchu mláta založený na adhezi buněk k nosiči, vzájemné adhezi buněk, růstu imobilizovaných buněk a vyrůstání buněk mimo biofilm. Do modelu byl zahrnut kocept aktivní frakce imobilizované biomasy a maximální dosažitelné koncentrace buněk v biofilmu. Vzhledem k tomu, že maximální tlouštka biofilmu byla 10 mikrometrů , limitace v důsledku difuze subsrátu uvnitř biofilmu byla zanedbána. Model dobře popisuje dynamiku růstu biofilmu, maximální množství buněk v biofilmu a spotřebu glukozy za konstatních hydrodynamických podmínek v probublavaném reaktoru.
Permanent Link: http://hdl.handle.net/11104/0012289
Number of the records: 1