Počet záznamů: 1

Optimization of a functionally graded circular plate with inner rigid thin obstacles. II. Approximate problems

  1. 1.
    0368735 - MU-W 2012 RIV DE eng J - Článek v odborném periodiku
    Hlaváček, Ivan - Lovíšek, J.
    Optimization of a functionally graded circular plate with inner rigid thin obstacles. II. Approximate problems.
    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik. Roč. 91, č. 12 (2011), s. 957-966 ISSN 0044-2267
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: control of elliptic variational inequalities * functionally graded plates * optimal design of plates * finite element approximations
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.863, rok: 2011
    http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000238/abstract

    Optimal design of a simply supported functionally graded axisymmetric circular plate resting on several inner rigid rings is presented in Part I. The variable thickness and the exponent of the power-law of the grading function are to be optimized. In Part II the approximate state problem and approximate optimal design problems are introduced, using spaces of linear and cubic Hermite splines, respectively. We prove the existence of approximate solutions and the convergence of a subsequence of the solutions to a solution of the original continuous optimal design problem.
    Trvalý link: http://hdl.handle.net/11104/0202999
    Název souboruStaženoVelikostKomentářVerzePřístup
    Hlavacek1.pdf1286.5 KBVydavatelský postprintvyžádat