Počet záznamů: 1

Neural Networks as Semiparametric Option Pricing Tool

  1. 1.
    0367688 - UTIA-B 2012 RIV CZ eng J - Článek v odborném periodiku
    Baruník, Jozef - Baruníková, M.
    Neural Networks as Semiparametric Option Pricing Tool.
    Bulletin of the Czech Econometric Society. Roč. 18, č. 28 (2011), s. 66-83 ISSN 1212-074X
    Grant CEP: GA ČR GD402/09/H045; GA ČR GA402/09/0965
    Grant ostatní: GA ČR(CZ) GA402/09/0732
    Výzkumný záměr: CEZ:AV0Z10750506
    Klíčová slova: option valuation * neural network * S&P 500 index options
    Kód oboru RIV: AH - Ekonomie
    http://library.utia.cas.cz/separaty/2011/E/barunik-0367688.pdf http://library.utia.cas.cz/separaty/2011/E/barunik-0367688.pdf

    We study the ability of artificial neural networks to price the European style call and put options on the S&P 500 index covering the daily data for the period from June 2004 to June 2007. We divide the data set into several categories according to moneyness and time to maturity. We then price all options within the categories. The results show that neural networks outperform benchmark ad hoc Black-Scholes model with significantly lower pricing errors across all categories for both call and put options. Moreover, the differences between ad hoc Black-Scholes and neural networks errors widen with deepness of moneyness or longer time to maturity. We show that neural networks, even without the volatility input, can correct for the Black-Scholes maturity and moneyness bias.
    Trvalý link: http://hdl.handle.net/11104/0202275