Počet záznamů: 1

The structure of digraphs associated with the congruence Xk=y(mod n)

  1. 1.
    0360532 - MU-W 2012 RIV CZ eng J - Článek v odborném periodiku
    Somer, L. - Křížek, Michal
    The structure of digraphs associated with the congruence Xk=y(mod n).
    Czechoslovak Mathematical Journal. Roč. 61, č. 2 (2011), s. 337-358 ISSN 0011-4642
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: Sophie Germain primes * Fermat primes * primitive roots * Chinese Remainder Theorem * congruence * diagraphs
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.262, rok: 2011
    http://www.springerlink.com/content/0734x49116250643/

    We assign to each pair of positive integers n and k > 2 a digraph G(n, k) whose set of vertices is H = {0, 1, . . . , n − 1} and for which there is a directed edge from a 2 H to b 2 H if ak b (mod n). We investigate the structure of G(n, k). In particular, upper bounds are given for the longest cycle in G(n, k). We find subdigraphs of G(n, k), called fundamental constituents of G(n, k), for which all trees attached to cycle vertices are isomorphic.
    Trvalý link: http://hdl.handle.net/11104/0198051
    Název souboruStaženoVelikostKomentářVerzePřístup
    Krizek2.pdf2267.9 KBVydavatelský postprintpovolen