Počet záznamů: 1

Two-sided bounds of the discretization error for finite elements

  1. 1.
    0359285 - MU-W 2012 RIV FR eng J - Článek v odborném periodiku
    Křížek, Michal - Roos, H.-G. - Chen, W.
    Two-sided bounds of the discretization error for finite elements.
    E S A I M: Mathematical Modelling and Numerical Analysis. Roč. 45, č. 5 (2011), s. 915-924 ISSN 0764-583X
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: Lagrange finite elements * Céa's lemma * superconvergence * lower error estimates
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.218, rok: 2011
    http://www.esaim-m2an.org/action/displayAbstract?fromPage=online&aid=8253942

    We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.
    Trvalý link: http://hdl.handle.net/11104/0197096
    Název souboruStaženoVelikostKomentářVerzePřístup
    Krizek8.pdf7158 KBVydavatelský postprintvyžádat