Počet záznamů: 1

Evolving Sum and Composite Kernel Functions for Regularization Networks

  1. 1.
    0359155 - UIVT-O 2012 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Vidnerová, Petra - Neruda, Roman
    Evolving Sum and Composite Kernel Functions for Regularization Networks.
    Adaptive and Natural Computing Algorithms. Part I. Vol. 1. Heidelberg: Springer, 2011 - (Dobnikar, A.; Lotrič, U.; Šter, B.), s. 180-189. Lecture Notes in Computer Science, 6593. ISBN 978-3-642-20281-0. ISSN 0302-9743.
    [ICANNGA'2011. International Conference /10./. Ljubljana (SI), 14.04.2011-16.04.2011]
    Grant CEP: GA MŠk OC10047; GA AV ČR KJB100300804
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: regularization networks * kernel functions * genetic algorithms
    Kód oboru RIV: IN - Informatika

    In this paper we propose a novel evolutionary algorithm for regularization networks. The main drawback of regularization networks in practical applications is the presence of meta-parameters, including the type and parameters of kernel functions Our learning algorithm provides a solution to this problem by searching through a space of different kernel functions, including sum and composite kernels. Thus, an optimal combination of kernel functions with parameters is evolved for given task specified by training data. Comparisons of composite kernels, single kernels, and traditional Gaussians are provided in several experiments.
    Trvalý link: http://hdl.handle.net/11104/0196991
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0359155.pdf0212.5 KBVydavatelský postprintvyžádat