Počet záznamů: 1

Discrete maximum principle for prismatic finite elements

  1. 1.
    0358618 - MU-W 2011 RIV SK eng C - Konferenční příspěvek (zahraniční konf.)
    Vejchodský, Tomáš
    Discrete maximum principle for prismatic finite elements.
    ALGORITMY 2009. Bratislava: Slovak University of Technology in Bratislava, 2009 - (Handlovičová, A.; Frolkovič, P.; Mikula, K.; Ševčovič, D.), s. 266-275. ISBN 978-80-227-3032-7.
    [ALGORITMY 2009. Vysoké Tatry - Podbanské (SK), 15.03.2009-20.03.2009]
    Grant CEP: GA ČR(CZ) GA102/07/0496; GA AV ČR IAA100760702
    Klíčová slova: prismatic finite elements * diffusion-reaction problem * discrete maximum principle
    Kód oboru RIV: BA - Obecná matematika

    The paper deals with a diffusion-reaction problem with homogeneous Dirichlet boundary conditions and presents conditions for the prismatic finite element meshes which guarantee the validity of the corresponding discrete maximum principle (DMP). These conditions are easy to verify and they imply a sufficient and a necessary bound to the maximal angle alpha((T))(max) in the triangular base T of a prism. The sufficient condition is alpha((T))(max) <= arctan root 7 and the necessary condition is alpha((T))(max) <= arctan root 8. If the maximal angle is in between these two values then the other angles in the triangle play a role.
    Trvalý link: http://hdl.handle.net/11104/0196591