Počet záznamů: 1

Discrete Maximum Principle for Poisson Equation with Mixed Boundary Conditions Solved by hp-FEM

  1. 1.
    0358615 - MU-W 2011 RIV CN eng J - Článek v odborném periodiku
    Vejchodský, Tomáš - Šolín, Pavel
    Discrete Maximum Principle for Poisson Equation with Mixed Boundary Conditions Solved by hp-FEM.
    Advances in Applied Mathematics and Mechanics. Roč. 1, č. 2 (2009), s. 201-214 ISSN 2070-0733
    Grant CEP: GA AV ČR IAA100760702; GA ČR(CZ) GA102/07/0496; GA ČR GA102/05/0629
    Výzkumný záměr: CEZ:AV0Z20570509
    Klíčová slova: discrete maximum principle * hp-FEM * poisson equation
    Kód oboru RIV: BA - Obecná matematika

    We present a proof of the discrete maximum principle (DMP) for the 1D Poisson equation -u ''=f equipped with mixed Dirichlet-Neumann boundary conditions. The problem is discretized using finite elements of arbitrary lengths and polynomial degrees (hp-FEM). We show that the DMP holds on all meshes with no limitations to the sizes and polynomial degrees of the elements.
    Trvalý link: http://hdl.handle.net/11104/0196588