Počet záznamů: 1

Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball

  1. 1.
    0358114 - MU-W 2011 RIV GB eng J - Článek v odborném periodiku
    Kopecká, Eva - Reich, S.
    Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball.
    Nonlinear Analysis: Theory, Methods & Applications. Roč. 70, č. 9 (2009), s. 3187-3194 ISSN 0362-546X
    Grant CEP: GA ČR GA201/06/0018
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: firmly nonexpansive mapping * Hilbert ball * hyperbolic metric
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.487, rok: 2009

    We study the resolvents of coaccretive operators in the Hilbert ball, with special emphasis on the asymptotic behavior of their compositions and metric convex combinations. We consider the case where the given coaccretive operators share a common fixed point inside the ball, as well as the case where they share a common sink point an its boundary. We establish weak convergence in the former case and strong convergence in the latter. We also present two related convergence results for a continuous implicit scheme.
    Trvalý link: http://hdl.handle.net/11104/0196226
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kopecka1.pdf1561.7 KBVydavatelský postprintvyžádat