Počet záznamů: 1

Spectral analysis of a Stokes-type operator arising from flow around a rotating body

  1. 1.
    0357503 - MU-W 2011 RIV JP eng J - Článek v odborném periodiku
    Farwig, R. - Nečasová, Šárka - Neustupa, Jiří
    Spectral analysis of a Stokes-type operator arising from flow around a rotating body.
    Journal of the Mathematical Society of Japan. Roč. 63, č. 1 (2011), s. 163-194 ISSN 0025-5645
    Grant CEP: GA AV ČR IAA100190802; GA AV ČR IAA100190804; GA MŠk LC06052
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: Stokes operator * Stokes operator with rotation * spectrum * essential spectrum
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.630, rok: 2011

    We consider the spectrum of the Stokes operator with and without rotation effect for the whole space and exterior domains in L-q-spaces. Based on similar results for the Dirichlet-Laplacian on R-n, n >= 2, we prove in the whole space case that the spectrum as a set in C does not change with q is an element of (1, infinity), but it changes its type from the residual to the continuous or to the point spectrum with q. The results for exterior domains are less complete, but the spectrum of the Stokes operator with rotation mainly is an essential one, consisting of infinitely many equidistant parallel half lines in the left complex half plane. The tools are strongly based on Fourier analysis in the whole space case and on stability properties of the essential spectrum for exterior domains.
    Trvalý link: http://hdl.handle.net/11104/0195766
    Název souboruStaženoVelikostKomentářVerzePřístup
    Necasova6.pdf1351.2 KBVydavatelský postprintvyžádat